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Overview

Timeline

B Project start date: FY16
B Project end date: FY19
B Percent complete: 5%

Budget

B Total project funding

® DOE share: $1,600k

® ASPPRC in-kind: $400k
B Funding for FY 2016:

® DOE: $400k

® In-kind: $100k
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Barriers

Typical development to deployment
cycle of 314 GEN AHSS is very long

Traditional experimental heat treatment

and characterization techniques take too
long for the development of medium Mn
steels

Lack of fundamental and quantitative
understanding between alloying
content, annealing parameters,
austenite volume fraction and
associated mechanical properties

Partners

ASPPRC
Colorado School of Mines (CSM)
APS



Relevance and Project Objectives
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» Accelerate the development to deployment :
cycle of cost-effective 3 generation advanced _ _[® 8Mn Steel
high strength steels with an integrated @ 150
experimental-and computational framework to 3 = L
meet DOE VTO targets and goals £ — G
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» FY16 REGULAR Milestone — Develop a high throughput HEXRD-
based in-situ characterization process to obtain desired RA volume
fraction and stability for 3rd GEN AHSS. 9/30/2016

B Status - on target with preliminary experiments done at APS in March
2016.

May 12, 2016 4



Approach: Technical Tasks and 7
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Their Inter-dependencies

Task 1 Task 2 Task 3
Traditional experimental | Compare Advanced HEXRD in-situ Compare New models and integrated modeling
characterization /validate characterization /validate framework development
1.1 Alloy selection and 2.1 Develop APS in-situ sample 3.1 Develop a phase-field based model with the
heat treatment and heating stage capability to model RA phase nucleation,
transformation and C diffusion
1.2 Microscopic 2.2 In-situ measurement of 3.2 Phase field predictions of RA volume
characterization of RA austenite formation kinefics at fraction under different annealing temperature
volume fraction different annealing temperatures and soaking time
1.3 Microscopic 2.3 Estimate C content of different 3.3. Phase field predictions of C and Mn
characterization of C and phases with changes of laftice distributions in the evolved microstructures
Mn content in different parameters during in-situ high under different IA temperature and time.
phases temperature HEXRD IA ftest
1.4 Indentation tests for 2.4 Perform in-situ HEXRD tensile 3.3 Prediction of RA stability with free energy
phase property test to determine RA stability and calculated with various C and Mn content under
characterization individual phase properties under differentIA condition.
different [A conditions
1.5 Macroscopic tests to 3.4 Predict the macroscopic tensile properties
determine tensile with the microstructure-based model and phase
properties properties measured in Task 2.4
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» Thrust 1. High throughput characterization (PNNL/APS):

B Develop an in-situ characterization technique to determine the austenite formation
kinetics of medium Mn TRIP steels on heating and cooling during intercritical
annealing to enable the accelerated development of future 3rd GEN AHSS;

» Thrust 2. Predictive understanding of |A process (CSM/PNNL):

B Develop a phase-field based modeling capability to predict the volume fraction,
morphology (including grain size) and stability (C and Mn concentration) of the
austenite formed during the intercritical annealing process;

» Thrust 3. Linking microstructures to properties (PNNL):

B Develop a predicted method for medium Mn steel to link microstructures, i.e.,
austenite volume fraction, stability and morphology, to the mechanical properties;

» Thrust 4. AHSS development acceleration (ASPPRC/PNNL/CSM):

B Optimize the strength and ductility of medium Mn TRIP steels by judicious
intercritical annealing temperature selection.
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>
>
>

Contract with CSM/ASPPRC expected in place in April 2016
CSM identified and recruited graduate student (to be on board in May 2016)

ASPPRC acquired commercial phase field software (MICRESS) with in-kind
contribution (Nov. 2015)

PNNL started literature search and exploring experimental and modeling
methodology development with available medium Mn materials

Traditional characterization on 5Mn and 8Mn steels

APS in-situ IA experiments with Bao 7Mn steel with different time and temperature
Performed in-situ HEXRD tensile test on Bao 7Mn steel

PNNL TOF-SIM evaluation of Mn segregation

PNNL modeling framework development on effects of alloy segregation on
mechanical properties
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Traditional Experimental-based Mn Steel
Development s T

» Fe-7.9Mn-0.14Si-0.05Al-0.07C Steel
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Zhao, et al., Materials 2014, 7, doi:10.3390/ma70x000x.



Traditional Experimental-based Mn Steel 7
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Development

» Fe-5Mn-0.2C Steel 50- 10
- Mn Concentration in ¢
> IA at 650°C for up to 144h o I
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Pacific Northwest

Thrust 1: High throughput experiments

» Identified in-situ heating stage:

B Linkam TS1500 d | -
® Up to 1500C A
=

. ¥

® Heating rate: 200°C/min -
® Cooling rate: 150°C/min -
@® Oxidation prevented with inert gas
» Performed in-situ IA experiments on Bao
0.14C-0.2Si-7Mn steel at different
temperatures, different soak times and
different cooling rates:
B 600°C, 650°C, 700°C, 750°C
B 20min, 60min
B 150°C/min, 120°C/min
» Obtained in-situ measurements on diffraction
patterns and phase volume fraction kinetics

during heating and cooling

May 12, 2016
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» Measured effects of |IA temperature on RA volume fraction evolution
(temperature calibration still needed)
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De Moor, et al. Scripta Mat. 2011.
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Thrust 1: High throughput experiments Bt
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» Measured effects of |IA temperature on lattice parameter evolution

|
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|

|
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o
» Linking lattice parameter (; S ST L 0.
evolution to diffusion il
kinetics and phase £t
transformation il
B Prediction of RA stability £ *f
at room temperature Al g e
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B Guide/calibrate phase Position (px)

field model development "o@
® C diffusion - fast A
® Mn diffusion — slow
@® Austenite grain size

dependency

B CCE improvement: Need

to consider interface
migration during IA
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Lee, et al. Scripta Mat. 2011.
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Thrust 2: Predictive understanding of I1A i vost
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process (CSM/PNNL)

» MICRESS phase field modeling:
B Low carbon steel Q&P process simulation
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May 12, 2016 Takahama, et al., Acta Mat. 2012. 14
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» Performed in-situ HEXRD experiment on Bao 0.14C-0.2Si-7Mn steel
» Observed epsilon martensite as transitional phase during deformation

05

No € before the strain of 0.04  10—10 ¢ diffraction ring observed after the strain Eong
of 0.04. The intensity peaks at around the strain .
In-situ measured stress
of 0.1 and become weaker afterwards, but not
completely disappear at the measurement point

after sample fracture.

vs. strain curve

15



Mn Segregation on the Formation of

Epsilon Martensite
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Martensite transformation is
observed to be non-uniform
for a 15Mn steel at 10%
strain
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-Secondary electron image of x-martensite within e-martensite Fe-0.07C-2.855i-15.3Mn-2.4Al1-0.017N at 10 pct strain.
McGrath, et al. Met Mat Trans A, 2013.



Simulation of Two Step Phase Transformation and
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Reaction force of model (from ABAQUS)

.

Average stress of model (from VUMAT)

SDV3
(Avg: 75%)
+1,5008-01

s | €-Mart
appearance

2% | Martensite
Z5E8% | appearance

+1.6670-01
+8.333e-02

May 12, 2016 18
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» PNNL TOF-SIMS imaging of Mn
and Al

B Performed at EMSL: A DOE BER
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Fig. 9—Solute segregation led to untransformed austenite in a sam- um o an a0 um 0 an 40
ple strained to (a) 10 pct. Segregated regions were transformed in M+ normalized to Fe+ &+ normalized to Fe+
samples strained to (b) 20 pct. (¢) Secondary electron image showing M0, TS 3.515e+003 MC 1 TS 1177e+004

the TRIP behavior at 20 pct strain in a Mn-segregated region.

1
McGrath, et al. Met Mat Trans A, 2013. ’



Unknowns of Epsilon Phase

» Epsilon volume fraction

= Does not lie in the precision of
dilatometry

= Need Mn dependent lattice
parameters

= Limited first principles calculations

= Need better thermodynamic data for
use in software such as Thermocalc
or MTDATA

» Epsilon phase mechanical properties
= Transitional phase
= Hard to quantitatively measure

Yang, et al. CALPHAD, 36(2012) 16-22.
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» This is a new start, and the project was not reviewed last year.

21
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» Task 1. Traditional experimental characterization
(ASPPRC/PNNL/EMSL/external collaborators):
B Contract in place
B Student on board in June 2016
B Start up material system yet to be identified

» Task 2. Advanced HEXRD in-situ characterization (PNNL/APS):

B |A heating methodology developed and tested
@ In-situ measured RA volume fraction and lattice parameters
B Experimental processes and data analyses framework in development for in-situ
tensile testing
@ Still need lattice parameters for epsilon martensite

» Task 3. Linking microstructures to properties (CSM/PNNL):

B Phase field software acquired.

B Developed framework to consider transitional epsilon martensite in predicting
microstructure-based tensile stress strain behaviors:
@ Selective transformation
@ Yield point elongation
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